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This paper presents energy integrated coefficients for a Legendre expansion of the 
angular dependence of the differential cross section which describes Compton scattering 
from nonstationary electrons. The electrons are assumed to have a Maxwellian velocity 
distribution and an analytic fit is presented for the dependence of these coefficients 
on photon energy and electron distribution temperature. If one wishes to use a Legendre 
expansion of the scattering kernel in a gray transport calculation, these coefficients may 
be used toaidin determining thedegreeof expansion requiredfor the particular situations 
to be encountered in the problem. The fits presented will yield integrated coefficients 
whose accuracy are good to approximately one percent for photon energies between 0 
and 1000 keV, and for electron distribution temperatures between 0 and 20 KeV. These 
well-behaved, smoothly varying energy integrated coefficients also serve as a check on 
the accuracy of arbitrarily constructed multigroup coefficients. 

1. INTRODUCTION 

The Klein-Nishina formula [I] for the differential cross section which describes 
the scatter of unpolarized photons from stationary electrons may be used to 
describe scattering from nonstationary electrons by the use of a Lorentz trans- 
formation [2]. If one considers an ensemble of free electrons which may be charac- 
terized by a relativistic Maxwellian distribution function, the expression for the 
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averaged differential scattering cross section over all possible electron velocities has 
been shown to be [2] 

Us(E - E’, Q - Q; Te) = j-” UfN(Eg --+ Eo’; /Lo) F(v; To) $ d3u. (1) 

Here cr8 is the differential cross section for the scatter of a photon of energy E with 
incident direction d scattered to direction D with final energy E’, from electrons 
whose distribution temperature is 7’, . The term afN is the Klein-Nishina cross 
section for scattering in the rest frame of a given electron. The energies E,, and E,,’ 
are the photon energies whose values in the laboratory frame are E and E’. Similarly, 
the cosine of the scattering angle in the rest frame of the electron, CL,, , has an 
angular cosine in the laboratory frame which is given by the inner product fi * 0’. 
The quantity v is the electron velocity, and the F function is the relativistic 
Maxwellian velocity distribution function given by [2] 

mX5 
F(K Tel = 4nckTe 

exp( -mc2h/kTe) 
K2(mc2/RTe) 

where, 

K,(x) is the modified Bessel function of order 2, where for x > 1, [3] 

K,(x) = [77/2x11/2 I?-” [l + j$ + ; $$ - f 15(& g + . . -1. 

Also, 
x = [l - v2/c2]-1/2 

D = 1 - fi . v/c; 

D’ = 1 - 0’ . $1~; and 

R = Boltzmann’s constant = 8.6164 x 10-2(KeVoK-1). 

Stone and Nelson [4] presented a method for calculating the differential scattering 
cross section as a function of the initial and final photon energies, the cosine of the 
scatter angle, and the electron distribution temperature. The computer routines 
which they developed are available through the Computer Information Center of 
the Lawrence Livermore Laboratory [5]. These routines were the tool used by the 
authors and by others referenced, to generate all differential scattering cross 
sections for the case of nonstationary electrons. 

When considering scattering in a solution to the equation for the radiative 
transfer of energy, it has often been found useful to expand the angular dependence 
of the differential scattering cross section in a series of Legendre polynomials. The 
first four coefficients of such an expansion were calculated by Matteson, Pomraning, 
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and Wilson for ten electron temperatures and over a fairly large range of initial 
and final photon energies [6]. These coefficients may be used in any method which 
considers scattering from one discrete energy to another. 

If one wishes to apply a multienergy group solution to a problem, then one 
must obtain integrals of these coefficients over appropriate energy limits. Stephan 
and Bridgman have obtained such a set of group-to-group scattering coefh- 
cients which are defined by the following relationship [7] 

, (4) 

where W is the equilibrium Wien weighting function, written in terms of photon 
number density.l The coefficients were obtained for 134 energy groups for photon 
energies from 0.05 to 400 KeV. 

In another paper, Stephan and Bridgman [9] report a systematic investigation 
of a thermal X-ray, discrete ordinates, benchmark problem in which the order of 
the angular quadrature, the number of energy groups, and the degree of anisotropy 
of the scattering kernel, as well as the photon and target electron temperatures 
were all systematically varied. Their results were relative, showing the variation in 
transmission as these parameters were changed. They found that a two or three 
term Legendre expansion of the scattering kernel was sufficient for thin slab 
geometries. In general, a more absolute measure of the number of Legendre terms 
necessary in the expansion of the scattering kernel is needed. Such a measure is 
developed here by calculating a set of Legendre coefficients, integrated over 
scattered energies, similar to those presented by Renken for the case of stationary 
electrons [IO]. Renken obtained coefficients for the following expansion. 

The parameter 0th is the classical Thompson cross section, which was taken to be 
665.1606 millibarns per free electron. The integral over all solid angles is, in reality, 
an integral over all final scattered photon energies as well. This is due to the 
constraint between the ratio of the initial and scattered photon energies and the 
cosine of the angle of scatter off a stationary electron [l I] 

c/e’ = 1 + cC(l - p), (6) 

1 The Wien function was chosen because the cross sections were developed for a calculation 
which did not consider the nonlinear induced terms in the scattering integrals. The inclusion of 
induced terms leads to an equilibrium distribution which would be described by a Plan&an 
function. 
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where 01 is the energy of the incident photon expressed in units of the electron rest 
energy. This constraint is often written in the form of a Dirac delta function, and 
included in the Klein-Nishina formula. The result of electron motion is a Doppler 
broadening of this constraint, making a range of scattered energies possible for 
a given initial energy and cosine of scatter angle. Graphical representation of this 
effect was displayed by Stone and Nelson [4]. To obtain a set of coefficients like 
those defined in Eq. (5) for the case of nonstationary electrons, one would have 
to perform an integration over the final scattered photon energies as well. The 
resultant one-group coefficients might not be of significance for use in “grey” cal- 
culations as such calculations would only be approximate, but other uses for the 
coefficients are worth noting. If one were using a multigroup transport technique 
to describe a situation which required angular resolution of the scattering process, 
these energy integrated coefficients would be useful in two respects. First, they 
would be a quantitative check for determining the relative importance of the 
various scattering coefficients to determine the degree of expansion required on the 
scattering kernel. Second, they would serve as physical checks upon the group-to- 
group scattering coefficients which one would construct for the calculation. For the 
zeroth order case, this would be an application of the principle of conservation of 
total cross section. For higher order coefficients a generalization of this principle 
could be used to assure accuracy of the group-to-group coefficients. 

2. ENERGY INTEGRATED COEFFICIENTS 

The Zero Order Coeficient 

For the case of scattering from nonstationary electrons, we shall call the quantity 
which corresponds to Renken’s energy integrated cross section U(E, p; 6,), where 

When the angular dependence of this quantity is represented in a Legendre poly- 
nomial expansion, it is of the same form as that which was presented by Renken, 
namely 

U(E, /.‘; ‘%) = Uth c [(2, + 1)/h] d(E; 0,) p,&). 63) 

The coefficients &t are obtained by 
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The zeroth order coefficient is, by definition, the normalized total Compton 
scattering cross section. This cross section was available directly from the Stone 
and Nelson routines, and the values obtained were fit over the following energy 
and temperature ranges: 

0 < Be < 20 KeV, 
0 < E < 1000 KeV. 

The accuracy of the Stone and Nelson data was represented to be within 0.1% for 
the quadrature option chosen, and the precision of the fit obtained was within 1 .O % 
agreement with the data. The zero order coefficient was observed to be a mono- 
tonically decreasing function of initial photon energy for a given electron tempera- 
ture. For this reason and the fact that in the limit of zero photon energy and 
stationary electrons the value of d0 is unity, the following form was chosen for the 
dependence of .rB, . For photons of energy (keV) scattering off of a Maxwellian 
distribution of electrons whose temperature is T(keV). 

rCSO(G To) = 1 - ~/r4lo(~e) + BOIV.?) * E + Bo4T.e) * 4. WY 

The coefficients B were nearly linearly dependent upon the electron temperature, 
and a second degree polynomial was used to describe this dependence. Thus, the 
two parameter fit for do was 

(11) 
M=O N-0 

The fits of Eq. (11) were obtained using a least-squares fitting routine [12], and 
the coefiicients Co&,, are presented in Table I. 

Energy Integrated Higher Order Coefficients 

The values of the energy integrated higher order expansion coefficients were not 
available from the Stone and Nelson routines. Therefore, a numerical integration 
was performed to obtain the coefficients defined in Eq. (9). A point is worth noting 
here. In the limit of forward scatter, the differential cross section becomes a delta 
function. The Stone and Nelson routines return a value for the energy integrated 
value of the differential cross section in the limit of forward scattering through the 
use of a limit function which they derived [4]. 

For this reason, it was expedient first to perform the energy integration in Eq. (9) 
for a set of scattering cosines chosen to cover the range of possible scatter directions. 
An examination of the differential scattering cross section resulted in the following 
observations. 

First, for electron temperatures which are low in comparison with the initial 
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photon energy, the cross section is very nearly a spike which is centered about the 
6nal scattered energy which one would compute for cold Compton scatter. 

Second, for relatively high electron temperatures, the function becomes much 
broader, and the peak is shifted slightly to higher final scattered energies. The 
reason for this upward shift of the peak may be attributed to the fact that for 
higher electron temperatures, upscattering may occur for any angle of scatter. 
This leads to a larger set of possible energies above the stationary Compton value. 
The probable energies below this value are bounded from below by zero. An 
example of this observed behavior is shown in Fig. 1 for photons which are back- 
scattered from an initial energy of 1 KeV. 

The numerical integrations over final energies were carried out using Simpson’s 
Rule. Fifty equidistant energy intervals were set up on either side of the cold 
Compton scattered energy for a given cosine of the scatter angle. Twelve equally 
spaced cosine intervals were considered requiring twelve discrete values besides 
that for the forward scattering returned by the Stone and Nelson routines. Thirty- 
five initial photon energies were considered. They range from 0.1 KeV to 1000 KeV, 
for ten electron temperatures which range from 0.5 to 20 KeV. Renken’s data 

2.0 3.0 
FINAL SCATTERED ENRGY (KEV) 

FIG. 1. Differential scattering cross section for backscatter from an initial photon energy 
of 1.0 KeV. 
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supplied a check on the values of the coefficients for the stationary electron case. 
These stationary values were calculated with a separate integration scheme to 
provide the coefficients at the thirty-five photon energies chosen. The agreement 
with Renken’s data was within 0.05 percent for the points which he published [lo]. 

The energy integrated differential cross sections were found to be smoothly 
varying functions of the cosine of the scattering angle. For low electron tempera- 
tures and low photon energies, they had essentially a parabolic form. As the photon 
energy increased, this cross section became strongly biased in the forward direction. 
The effect of elevated electron temperature was to spread the scattering probability 
out more evenly over all scatter cosines as is illustrated in Figs. 2 and 3. 

The numerical integrals required over all solid angles in Eq. (9) may be written 
as the product of 27~ and the integral over all scattering cosines. The integration 
was carried out over the twelve intervals using Weddel’s rule, a sixth-order accurate 
integration scheme. This method requires a number of equispaced intervals which 
is some multiple of six [13]. A convenient means for checking the accuracy of the 
overall integration procedure was to compare the zeroth-order coefficients 
calculated against the value of the total cross section which was returned by the 

100 

90 

I 
-I 0 

COSINE OF SCATTER ANGLE 

FIG. 2. Energy integrated differential scattering cross section for an initial photon energy 
of 0.1 KeV. 
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-1 0 *I 
COSINE OF SCATTER ANGLE 

FIG. 3. Energy integrated differential scattering cross section for an initial photon energy 
of 100 KeV. 

Stone and Nelson routines. The precision of the integration scheme was within 
1% of the Stone and Nelson data for all cases. Because of the order of accuracy 
of the integration scheme, it is reasonable to expect the values calculated for the 
first- through third-order coefficients to be of similar accuracy [14]. 

Examination of the behavior of the higher order coefficients revealed that their 
dependence upon initial photon energy for a given order coefficient was 
qualitatively similar over the range of electron temperatures considered. For this 
reason, the higher order coefficients were first fit as a function of photon energy 
for a given electron temperature as 

J?t(e; Te) = i BL,M(Td * EM (12) 
M=O 

The variation of the coefficients B L.M was then seen to be a nearly linear function of 
electron temperature. This variation was fit with a set of second-degree poly- 
nomials, so that the expression for the higher order coefficients was 

&(e; Te) = 5 ~4 i C,.zu,~Te~ (13) 
h4=0 N-0 
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In performing the fits, the coefficients C,,,,, and C,,,, were constrained to be zero 
and G,o.o was constrained to be 0.1. These values represent the values of the 
coefficients Z& , d2, and &Ys in the classical limit of Thompson scatter. The least- 
squares fits were performed by setting the values of C,,,,,, , C,,,, , and C,,,,, and 
then letting the routine choose the values of the other CL,,, . The values of the 
higher order coefficients are given in Table I. By using these fits over the ranges 
specified for the electron temperatures and photon energies, the maximum devia- 
tions from the calculated values of &I , d2, ~2s were within &O.OOOS in all cases. 
Since the true value for J;pl and &s is zero for the limiting case of Thompson scatter, 
percentage deviations were not relevant for these coefficients. The maximum 
deviation from the value of &$ was found to be less than 1%. 

Figure 4 shows the dependence upon photon energy of the J&S for various 
electron temperatures. As was shown by Renken, the order of the expansion 

I.0 IO loo 
INITIAL’PHOTCN ENERGY IKEi’) 

FIG. 4. 
coefficients. 

Electron temperature and photon energy dependence of first four Legendre expansion 
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required for an adequate description of scattering increases with increasing photon 
energy for cold Compton scatter. While it might appear that the influence of the 
coefficients -01: is decreasing with increasing electron temperature for low photon 
energies, it should be pointed out that it may have negative values in this 
range. For example, with a 20 keV electron temperature, the value of &I approaches 
approximately -0.0156 as the photon energy approaches zero. As the photon 
energy becomes very large in comparison with the electron temperature, the values 
of all four coefficients appear to converge to the values for the cold case. 
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